
1962 IRE TRANSAC’t’IONS ON MICROWAVE THEORY AND TECHNIQUES 573

Excitation of Surface Waves on a Perfectly Conducting

Screen Covered with Anisotropic Plasma*

~.R. SESHADRI~, SENIOR MEMBER> IRE

Summar~—The field due to a line source of magnetic current
situate d in a lossless plasma region above a perfectly conducting
screen is considered when a uniform static magnetic field is im-
pressed throughout the plasma region parallel to the d~rection of the
line source. It is shown that under certain conditions surface waves
are excited on the screen. The dependence of the efficiency of exci-
tation of surface waves on the dk.tance d of the line source from the
ground screen is examined. Also, the asymptotic series for the radia-
tion field is derived, and its leading term is shown to vanish for a
particular value of d. Under these conditions a strong surface-wave
field is maintained near the guiding surface.

INTRODUCTION

I

N A RECENT PAPER,l surface waves were shown

to exist on a screen which is assumed to be per-

fectly conducting in a given direction and com-

pletely insulating in the perpendicular direction. In

this paper, similar surface waves are shown to exist

even when the screen is perfectly conducting provided

the medium is anisotropic. Specifically, when a line

source of magnetic current is situated in a Iossless

plasma above a perfectly conducting screen and a uni-

form static magnetic field is impressed throughout the

plasma parallel to the line source, surface waves can

exist on the screen. The surface waves are generated

only when the plasma is anisotropic and when the oper-

ating frequency exceeds the plasma frequency. In addi-

tion, for a particular ratio of the operating to the

plasma frequency, the static magnetic field must be less

than a critical value. The efficiency of excitation of sur-

face waves is evaluated and its dependence on the dis-

tance d of the line source from the ground screen is

examined for one set of values of plasma and gyromag-

netic frequencies. Further, it is shown that by a proper

choice of d, it is possible to nullify the leading term in

the asymptotic series for the radiation field and thereby

obtain a surface wave field which is much stronger than

the radiation field near the guiding surface. Similar

results have been obtained for the case of surface waves

excited by a line source of magnetic current on a di-

electric-coated conducting screen. z
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EXCITATION OF SURFACE WAVES

Consider a perfectly conducting screen of infinite ex-

tent located in the x-y plane, where x, y, and z form a

right-handed coordinate system. The half space z >0 is

filled with a uniform plasma. In this investigation, c,nly

a primitive model is assumed for the ph~sma; that is,

1) the plasma as a whole is considered to be at rest,

2) the pressure gradient in the equation of motion is

neglected in comparison with the effect of the alternat-

ing electric field, 3) the plasma is assumed to be [oss-

less, and 4) the oscillations of the ions are neglected in

comparison with those of the electrons.

A line source of magnetic current is located in the

plasma at x = O, z = d; it is parallel to the y axis and may

be represented as

Jm = j8(Z)8(Z – d). (1)

A uniform magnetic field l?O is impressed in the y direc-

tion throughout the pIasma. See Fig. 1. It is desired to

examine the electromagnetic field set up by the line

source inside the plasma.
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Fig. l—Geometry of the problem.

As a consequence of the primitive model assumed for

the plasma, it is found that in the plasma region (z> O),

after the usual linearization, the electric and magnetic

fields satisfy the time-harmonic Maxwell’s equaticms

VXE=iUpOH– J. (24

VXH= –i(.Moe. E (2b)

where NO and e. are the permeability and dielectric con-

stant pertaining to vacuum. A harmonic time depend-

ence e–~~~ is assumed for all the field components. The

components of the relative dyadic dielectric constant
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c are given by the following matrix

where

“= 1-(3’[’-(3-’

‘2=(3’[:-31
and

()UP
2

63=1——.
@

(4)

The plasma frequency COPand the gyromagnetic fre-

quency WCof the electrons are given by

eBo 2

(JC= —--,
~P

2_ne (5)
m ma

where e is the charge of an electron, m is the mass of

an electron, n is the electron density, and B O is the

applied static magnetic field.

The source and the geometry of the problem are in-

dependent of the y coordinate and therefore, all the

field quantities are invariant with respect to the y co-

ordinate. With d/dy = O in (2), the electromagnetic field

is separable into E and H modes which are excited,

respectively, by line sources of magnetic and electric

current. Since only a line source of magnetic current is

present, the H mode is not present; and hence,

E. =Hz =H. = O. Only a single component of the mag-

netic field, namely, HU, is present. It is easily shown

with the help of (2b) that the remaining components of

the electric field are given by

where

~ = ~1~ — ~29. (7)

With the help of (2a) and (6) it follows that H.(x, z)

satisfies the following source-dependent wave equation:

where

(9)

In (9), k. is the wave number corresponding to vacuum.

It is assumed in what follows that e >0. This require-

ment imposes certain restrictions on the range of values

of wP/w and u./co.

The geometry of the problem suggests the following

representations for the field components:

.x

H.(X, z) = ~ s 77v(~,z) eir”d~
27r -w

(lOa)

and

It follows from (6), (8) and (10) that

and

[3 1
+ i’ Rv(r, z) = – = 8(2 – d) (12)

~1

where

E=+tik’ -r’ k>~

.$=+i~~t_kZ k<~. (13)

The solution of (12) gives

{

Aei$s + &-i$. d<z
77.((-,z) =

(j’eit. + De–if. d>z
(14)

and

The radiation condition requires HV(X, z) to be an out-

going wave for z-+ w ; hence B = O. Since the tangential

component of the electric field is zero for z = O, it fol-

lows from (ha) and (14) that

The requirement that the tangential component of the

magnetic field should be continuous at z = d gives

Aeitd = ceiW + De-iW. (17)

The use of the jump condition (15) in (14) leads to
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The expressions for A, C and D may be obtained from

the solution of the simultaneous equations (16), (17)

and (18). The results are:

B=O,

(19)

The substitution of (14) (lOa) and the use of (16) and

(19) yields

.~Kz+if2~f for z > d. (20a)

“rhe contour for the integrals in (20a) and (20b) is

along the real axis in the ~ plane as shown in Fig. 2. The

integrand in (20a) and (20b) has a pole at

[
I

!
I
I

Fig. 2—Contour of integration in the ~ plane

This pole is either on the real or the imaginary axis,

depending upon whether cl is positive or negative. Since

the aim of this paper is to examine the characteristics of

the surface wave that is excited on the ground screen,

on] y positive values of el are considered. This leads to

the following restrictions:

l) fi <landLIJ
‘4-[,-(;)]’2<;<[, _(:)]”.

For O <q <1, the pole of the integrand is on the real

axis and the contour of integration is inderited above

the singularity — k and below the singularities at k and

k~l/ ~;. For x> O, the integrals may be eV~l] uated by

closing the contour in the upper half of the j’ plane as

shown in Fig. 2. The contribution to the integrals in

(20a) and (20b) is the sum of the residue at the pole

{= &/v’S and a branch-cut integral.

The value of the branch-cut integral depends on some

inverse power of x. Hence, for sufficiently large x, the

value is negligible compared to the contribution due to

the pole. Thus, for positive large x,

It is obvious that Hy(x, z) given in (21) represents a sur-

face wave propagating in the positive x direction and

exponentially attenuated in the z direction. The phase

velocity VP of the wave is given by

(22)

where co and c are, respectively, the velocity of prc~pa-

gation of electro-magnetic waves in vacuum and in an

unbounded anisotropic plasma. Since Cl< 1, the phase

velocity of the surface wave is greater than the velocity

of electromagnetic waves in vacuum and less than that

in the unbounded anisotropic plasma. When the static

magnetic field is reversed in direction, 62 changes sign

and the pole of the integrand in (20a) and (20b) occurs

now at ~ = — kel/ ~~ = — ko~z. Hence, the surface wave

reverses direction and propagates in the negative x

direction, instead of in the positive x direction as de-

scribed in (21). When there is no static magnetic field,

C2 vanishes and from (20a) and (20b) it is clear that, in

this case, there is no surface wave. This means that be-

sides other restrictions the plasma must be anisotropic

if surface waves are to exist on the ground screen.

The substitution of (21) in (6) gives the other field

components of the surface wave as follows:

E.(at, z) = o

Therefore, the surface wave is a TEM wave with respect

to the direction of propagation.

In the integral representation (20a) and (20b) for

II.(x, z), the first term corresponds to the incident

field due to the line source and the second term corre-

sponds to the field of the line source reflected from~ the
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ground screen. The asymptotic form of the reflected

field is obtained by performing a saddle-point evalua-

tion of the integral (20a) and (20 b). For this purpose,

the transformation

f=kcosr ‘ (24)
Contour_
when x=m

is introduced. With it, the expression [(20a) and (20b) ]

for Hv(x, z) becomes

ZZu(x, z) = 17vyx, z) + H.’(X, z)

where
I
II

27.’(%, z) = ;“C ‘; ,“~’ c“’ ‘+1’-’[ ““ ‘loll- (26)
I
I
I
I
I

J

u60e El sin r + ie2 cos r
H,’(cc, z) = ~ —

I

I

27r c 2E1 q sinr – icz cos r I

I
.eik[J 00sr+(z+d) sin ,l~rc (27)

)
1.1

1
r
, \. \

l\
1.
1 \.

~!
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i

j

~1
,add,e .--#

contour

q

7r
— ‘I

c

The original contour along the real axis in the ~ plane is Fig. 3—Integration countours in the , plane, & >0.

transformed into the contour C shown in Fig. 3. The

asymptotic form of the reflected field is obtained by a

saddle-point evaluation of the integral in (27). The RADIATION PATTERN

saddIe point which lies in the interval O < rO <r is
In order to obtain the radiation pattern, it is neces-

given by
sary to evaluate the integrals in (26) and (27) asymp-

z+d totically. For this purpose, let
70 = tan–l

\xj “
(28)

X=pcoso; z=psinti. (32)

Setting T =rl+zk~, the equation of the saddle-point con-

tour is easily shown to be given by
With (32), (26) and (27) may be rewritten as

TI = TO T Cos-l (sech Tz) for 7Z ~ O. (29) ~y~(x, Z) = +

s ‘f ~–i~~ sin .eikp cos (0–T)~7 for z > d (33)

The pole of the integrand in (27) is seen to occur at

P :~1 = O, 72= cosh–l(cl/~~). For ~ = O, TO=7r/2 and for and

this case, the contour C can be deformed into the

saddle-point contour without crossing the pole. On the

s
OJCIICElSinT+‘&COSTH.”(X,z) = : —

other hand, for x = w ro = O, and the original contour C 2CI c1 sinr — iq cos T
crosses the Dole P, and the residue of the internal at this

pole must ~e added to the contribution from-the saddle

point. The saddle contour corresponding to the saddle

point

E
TO(P)= Cos–1 —

l.G-
(30)

is seen to pass through the pole P. If To< TO(P), the pole

is crossed and the surface wave occurs; if To> TO(P),

there is no surface wave. Thus the region of physical

space where the surface wave is present is obtained

from (28), (30) and (7):

The region of the physical space where the surface wave

is present is shown in Fig. 1. If the impressed static field

is zero, 62= O. From (31) and Fig. 1, it is seen then that

there is no region where the surface wave exists.

For kp>>l, (33) and (34) are

totically with the result that

H.(X, z’) = If,yx, z) + Hv”(.v, z)

easily evaluated asymp- :

“[ el sin @+ & cos O
g–kd sin R + e,kd sin O

1
. (35)

61sin @— icz cos 0

With (6) and (32), it may easily be shown that for

kp>> 1,

The outward power flow, per unit area, per unit length

of the screen at an angle O is obtained from (35) and
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(a) (b)

Fig, 4—Radiationp atterna P/~=0.5, oJco=O.
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Fig. 5–-Radiation pattern ap/u=0.5, u,/a=O.25.

(36) to be

S = ~ReB.E(p,O) XH*(p,6’) = ~ ] H,(p, /3) 1’
2WQW

—— = F(o)
87relp

(37)

where

F(0) ~ ~~ sin 0 cos (M sin 0) – ,2 cos 0 sin (h! sin O)]z

[e sin’ O + c,”]
. (38)

F(6) given in (38) is defined to be the radiation pattern.

In Figs. 4 and 5, the radiation pattern F(O) is plotted

for two different sets of values of wP/u and tiC/co. In

each figure, kOd is used as a parameter. ‘The patterns

are symmetrical about O= n-/2, when uc/w = O. When

ti./ti # O, the plasma is anisotropic and the patterns are

no longer symmetrical about O = ,r/2. A reversal in the

direction of the magnetic field changes the sign of ez

and hence causes the radiation pattern to be rotated

through 180° about the z axis.

EFFICIENCY OF EXCITATION

The efficiency of excitation of surface waves is de-

fined to be the ratio of the power propagated as a. sur-

face wave per unit width of the screen tc, the sum of the

powers in the surface wave and the radiation fields.

The power per unit width of the screen ,P~ delivered by

the magnetic current line source to the radiation field

is easily seen to be given by

J
T

J

T

$’R = SpdO = ~ F(0)dO.
87re] o

(39)
o

The power in the surface wave per unit width of the

screen is obtainecl from the relation

s
‘1

PLY = 20 ~ Re E’(x, z) X H* (z, ,z)dz, (40)
o

where H(x, z) and E(.x, z) are given, respectively, in

(21) and (23). The substitution of E(x, z) and l~~(x, z)
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from (23) and (21) in (40) gives

P&! = *@,*\,, ]c?-zkd(lc,,,ti~
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residue at the pole ~ = k~l/~; gives the surface-wave

(41)
field and this has been evaluated before. It is now de-

sired to obtain the contribution from the branch-cut

The efficiency of excitation obtained from (39) and

(41) is

—— (42)

s

r~–zkod(l<2[ W:)
+’ F(0)dO

27W1 I ~zI o

When kod = O, j~F(tV dO can easily be. evaluated and an

explicit expression obtained for q. From (38), for kod = O,

it is seen that

C12sin2 9
F(O) =

[c sin’ O + Q’] “

It is readily shown that for F(O) given in (43)

(43)

(44)

The substitution of (44) in (42) yields the following

result for kod = O:

(45)

From (45) and (4), it is obvious that for kod = O, the

efficiency of excitation q increases as cuC/a increases.

For other values of kod, the value of

s ‘F(0)dO
o

has to be obtained by numerical integration and the

value of q is then determined from (42). For one set of

values of wP/w and w./u, the values of v are given in

Table I for different values of kid. It is found that the

TABLE I

VALUES OFv FOR Up/W= 0.5 AND UJU = 0.25

k,d o 1 2 3 4 5

7 0.17 0.17 0.25 0.31 0.23 0.13

maximum value of ~ does not occur when d = O, but at

some other value of d. Hence, it follows that by a suit-

able adjustment of the distance of the line source from

the ground screen, the power delivered to the radiation

field may be minimized and a maximum value obtained

for the efficiency of excitation.

APPROXIMATE EVALUATION OF H.(x, z)

The integral representation of Hu(x, z) given in

(20a) and “(20b) shows that the contribution to Hu(x,z)

arises from a pole and a branch-cut integral. The

integral. This contribution can be obtained as a series

in inverse powers of x by expanding the integrand in a

Taylor series and integrating term by term. The result

of a straightforward calculation gives

kweoe

[

F,(z, d)
Hu(at, z) = — ~i(&z–7rJ4)

&e, 1
3F2(Z’ ‘) (46)

(kx)3f2 – 8(kx)5/2

where

F,(z, d)=z+d–~dzk–~ (47)
cl

and

‘Z(zd)‘H3-w+[8(9’-31(z+d)

— ‘kdz–4k ~(d+z)2–:(d+ Z)z
cl ~2
4 62

——— k’dz(d’ + Z’).
3 cl

(48)

The conditions for validity of the asymptotic series in

(46) are

s>>d+z; kx>>~. e22 (49)

Observe that (20a) and (20b) and the condition equa-

tion (49) are symmetrical in z and d. It follows that (46)

is valid for z > d or z <d.

The asymptotic series in (46) represents the radia-

tion field. If the height d of the line source from the

ground screen is such that d = d~ = el/ezk, then it foI-

10WS that Fl(z, d~) = O and

3kucoe ~i (kx–u /4)

~.(~, z) = – ~ti~ Fz(z> R’.) (kX),/, ‘ ’50)

where

[ 3 (Jl[+(:)-z]e“1)F,(z, dJ=4 l–~ S

If the line source is at a distance dn from the ground

screen, the first term in the asymptotic expansion of

the radiation field vanishes and the radiation field near

the ground screen becomes very weak. An almost pure

surface wave may be said to be generated in this special

case. This situation is similar to that observed by Cul-

Ien in his treatment of the excitation of surface waves

on a reactive surface.

ACKNOWLEDGMENT

The author wishes to thank Profs. R. W. P. King and

T. T. Wu for their help and encouragement with this

research.


