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Excitation of Sutface Waves on a Petfectly Conducting
Screen Covered with Anisotropic Plasma®

5. R. SESHADRI{, SENIOR MEMBER, IRE

Summary—The field due to a line source of magnetic current
situated in a lossless plasma region above a perfectly conducting
screen is considered when a uniform static magnetic field is im-
pressed throughout the plasma region parallel to the direction of the
line source. It is shown that under certain conditions surface waves
are excited on the screen. The dependence of the efficiency of exci-
tation of surface waves on the distance d of the line source from the
ground screen is examined. Also, the asymptotic series for the radja-
tion field is derived, and its leading term is shown to vanish for a
particular value of d. Under these conditions a strong surface-wave
field is maintained near the guiding surface.

INTRODUCTION

N A RECENT PAPER,! surface waves were shown
I to exist on a screen which is assumed to be per-

fectly conducting in a given direction and com-
pletely insulating in the perpendicular direction. In
this paper, similar surface waves are shown to exist
even when the screen is perfectly conducting provided
the medium is anisotropic. Specifically, when a line
source of magnetic current is situated in a lossless
plasma above a perfectly conducting screen and a uni-
form static magnetic field is impressed throughout the
plasma parallel to the line source, surface waves can
exist on the screen. The surface waves are generated
only when the plasma is anisotropic and when the oper-
ating frequency exceeds the plasma frequency. In addi-
tion, for a particular ratio of the operating to the
plasma frequency, the static magnetic field must be less
than a critical value. The efficiency of excitation of sur-
face waves is evaluated and its dependence on the dis-
tance d of the line source from the ground screen is
examined for one set of values of plasma and gyromag-
netic frequencies. Further, it is shown that by a proper
choice of d, it is possible to nullify the leading term in
the asymptotic series for the radiation field and thereby
obtain a surface wave field which is much stronger than
the radiation field near the guiding surface. Similar
results have been obtained for the case of surface waves
excited by a line source of magnetic current on a di-
electric-coated conducting screen.?
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EXCITATION OF SURFACE WAVES

Consider a perfectly conducting screen of infinite ex-
tent located in the x-y plane, where x, v, and z form a
right-handed coordinate system. The half space >0 is
filled with a uniform plasma. In this investigation, only
a primitive model is assumed for the plasma; that is,
1) the plasma as a whole is considered to be at rest,
2) the pressure gradient in the equation of motion is
neglected in comparison with the effect of the alternat-
ing electric field, 3) the plasma is assumed to be loss-
less, and 4) the oscillations of the ions are neglected in
comparison with those of the electrons.

A line source of magnetic current is located in the
plasma at x =0, g=d; it is parallel to the v axis and may
be represented as

Jn = $8(x)8(z — d). M

A uniform magnetic field By is impressed in the y direc-
tion throughout the plasma. See Fig. 1. It is desired to
examine the electromagnetic field set up by the line
source inside the plasma.
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Fig. 1—Geometry of the problem.

As a consequence of the primitive model assumed for
the plasma, it is found that in the plasma region (z >0),
after the usual linearization, the electric and magnetic
fields satisfy the time-harmonic Maxwell's equations

VX E = iwueH — Jn (2a)
VX H= —iwes E (2b)
where uo and €, are the permeability and dielectric con-
stant pertaining to vacuum. A harmonic time depend-

ence e~t¢! ig assumed for all the field components. The
components of the relative dyadic dielectric constant
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¢ are given by the following matrix

€1 0 _i€2
e=| 0 ¢ O (3)
€2 0 €1
where
w 2 W, 27—1
amt= ([ - ()]
w W
CY-oT
e=|—])|—— —
w We w
and

€3

w 2
1— <—P> . (4)
w
The plasma frequency w, and the gyromagnetic fre-
quency o, of the electrons are given by
nel

CBO
r Wyt = (5
m Mmeg

We — —

where ¢ is the charge of an electron, m is the mass of
an electron, n is the electron density, and By is the
applied static magnetic field.

The source and the geometry of the problem are in-
dependent of the y coordinate and therefore, all the
field quantities are invariant with respect to the y co-
ordinate., With d/0y=0 in (2), the electromagnetic field
is separable into E and H modes which are excited,
respectively, by line sources of magnetic and electric
current. Since only a line source of magnetic current is
present, the H mode is not present; and hence,
E,=H,=H,=0. Only a single component of the mag-
netic field, namely, H,, is present. It is easily shown
with the help of (2b) that the remaining components of

the electric field are given by
161 0
E(x,2) = ——~——H(x z)———H(x z)
wepe 0% wepe 0%
i, & & 0
E.(x,2) = M—H(x 2) — —— — H,(,3) (6)
wepe wege 9%
where
€= e — e’ )

With the help of (2a) and (6) it follows that H,(x, 2)
satisfies the following source-dependent wave equation:

C @) —d)  (8)

9? 92 1we
l: +—~+k2}H(xz)——

9x? €1
where

wzyoéoé

k02€

B2 = ©

€1 €1
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In (9), ko is the wave number corresponding to vacuum.
It is assumed in what follows that ¢>0. This require-
ment imposes certain restrictions on the range of values
of w,/w and w./w.

The geometry of the problem suggests the following
representations for the field components:

1 £
B9 = — [ TG, Dear (10a)
2rd
1 ®_
End) = — [ Euls, et (10b)
2md
and
1 »_
E.(z,3) = ~f E (¢, z)eitds. (10¢)
2rd
It follows from (6), (8) and (10) that
_ €1
E(,2) = — — —H W68 — ——Hy(5,2), (11a)
wege 0% WEYE
— el a
Ez(g.:z) ——~H(§‘,z) - T —Hy(g‘,Z), (11b)
WEQE wege 02
and
a2 _ Twege
[+e] e - - -0
dz? €1
where
E= VR -2 k>¢
=14/ —R  R<{ (13)
The solution of (12) gives
— Aettz | Be—its d<z
T, 2) = 14
&%) {CeiE’ + De itz d>z (14)
and
— d — iweoe
— H,(¢,d+) — —HY(,d—) = — (15)
ds €1

The radiation condition requires H,(x, ) to be an out-
going wave for z— o ; hence B=0. Since the tangential
component of the electric field is zero for =0, it fol-
lows from (11a) and (14) that

EIE + 1'62?

af — texl

C=RED and R@) = - (16)

The requirement that the tangential component of the
magnetic field should be continuous at z=d gives

Aeitd = Ceitd  Deitd, 17
The use of the jump condition (15) in (14) leads to
Aertt — (Ceitt — Deitd) — ‘i‘: (18)
€1
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The expressions for 4, C and D may be obtained from

the solution of the simultaneous equations (16), (17)
and (18). The results are:

4= Z_z [e% + R(s)ew],

€1

B =0,

C = - ZER@)e,

T e ——— el

261
WEQE

D= — ¢itd, (19)
26:¢

The substitution of (14) (10a) and the use of (16) and
(19) yields

27r _ 2eif

o 612 - iézi‘
- giatibede for z > d. (20a)
s = [ - %[ﬂ e e’“]
27r . 26:E 1§ — 1ef
»gHetibdge for z < d. (20b)

The contour for the integrals in (20a) and (20b) is
along the real axis in the { plane as shown in Fig. 2. The
integrand in (20a) and (20b) has a pole at

——+k€1—+k —
g-'_ \/'6—'_ oV €1.
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Fig. 2—Contour of integration in the ¢ plane

This pole is either on the real or the imaginary axis,
depending upon whether ¢; is positive or negative. Since
the aim of this paper is to examine the characteristics of
the surface wave that is excited orn the ground screen,
only positive values of & are considered. This leads to
the following restrictions:

1) 27 <1 and

@

s[-@T <<b-E)T"
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For 0 <e <1, the pole of the integrand is on the real
axis and the contour of integration is indented above
the singularity —% and below the singularities at %2 and
kei/v/e. For x>0, the integrals may be evaluated by
closing the contour in the upper half of the { plane as
shown in Fig. 2. The contribution to the integrals in
(20a) and (20b) is the sum of the residue at the pole
{=ke;/\/e and a branch-cut integral.

The value of the branch-cut integral depends on some
inverse power of x. Hence, {or sufficiently large %, the
value is negligible compared to the contribution due to
the pole. Thus, for positive large x,

H,(x, )

= —weolezl exp {L‘\k/e—lﬁc—fj—i[«( —I—d)}

0‘ 2‘

— ]| exp {ikox/:lx -6t o) o

It is obvious that H,(x, 2) given in (21) represents a sur-
face wave propagating in the positive x direction and
exponentially attenuated in the gz direction. The phase
velocity v, of the wave is given by
Co C\/z
\/61 Ve
where ¢o and ¢ are, respectively, the velocity of propa-
gation of electro-magnetic waves in vacuum and in an
unbounded anisotropic plasma. Since ¢ <1, the phase
velocity of the surface wave is greater than the velocity
of electromagnetic waves in vacuum and less than that
in the unbounded anisotropic plasma. When the static
magnetic field is reversed in direction, €; changes sign
and the pole of the integrand in (20a) and (20b) occurs
now at { = —ke/ve= —kove. Hence, the surface wave
reverses direction and propagates in the negative x
direction, instead of in the positive x direction as de-
scribed in (21). When there is no static magnetic field,
€2 vanishes and from (20a) and (20b) it is clear that, in
this case, there is no surface wave. This means that be-
sides other restrictions the plasma must be anisotropic
if surface waves are to exist on the ground screen,

The substitution of (21) in (6) gives the other field
components of the surface wave as follows:

(22)

Vp =

E.(x,2) =0

{ikq kl 2l( n i)} (23)
X — X — =& [¢
W Ve

Therefore, the surface wave isa TEM wave with respect
to the direction of propagation.

In the integral representation (20a) and (20b) for
H,(x, 2), the first term corresponds to the incident
field due to the line source and the second term corre-
sponds to the field of the line source reflected from the

k'éz’

E.(x,3) = —\/_
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ground screen. The asymptotic form of the reflected
field is obtained by performing a saddle-point evalua-
tion of the integral (20a) and (20b). For this purpose,
the transformation

¢ =kFkcosTt (24)

is introduced. With it, the expression [(20a) and (20b) ]
for H,(x, z) becomes

H,(x, 5) = H,(x, 5) + Hy (%, 2)

where
) 1 wWEQE )

Hyz(x, 2) —_ ezk[z cos 7+]2—d| sin 1’]d7-

2nd ¢ 26 (26)
1 wepe €1 81N 7 + Tz COS T

Hyr(x: Z) = . .
20J ¢ 2e; erSinT — te3COST
. cik [z cos r+(z+d) sin T]dT. (27)

The original contour along the real axis in the { plane is
transformed into the contour C shown in Fig. 3. The
asymptotic form of the reflected field is obtained by a
saddle-point evaluation of the integral in (27). The
saddle point which lies in the interval 0<ry<w is
given by

z+d

| ]

(28)

To = tan—?!

Setting 7 =71+ 175, the equation of the saddle-point con-
tour is easily shown to be given by

71 = 7o + cos™! (sech 15) for 722 0. (29)

The pole of the integrand in (27) is seen to occur at
P:ry=0, ro=cosh™'(e;/v€). For x=0, 7¢=7/2 and for
this case, the contour C can be deformed into the
saddle-point contour without crossing the pole. On the
other hand, for x=« 71,=0, and the original contour C
crosses the pole P, and the residue of the integral at this
pole must be added to the contribution from the saddle
point. The saddle contour corresponding to the saddle
point

ro(P) = cos! \;H (30)

€1

is seen to pass through the pole P. If 7, <7o(P), the pole
is crossed and the surface wave occurs; if 79>7,(P),
there is no surface wave. Thus the region of physical

space where the surface wave is present is obtained
from (28), (30) and (7):

Ta<-2, (31)
Z \/; X.

The region of the physical space where the surface wave
is present is shown in Fig. 1. If the impressed static field
is zero, €=0. From (31) and Fig. 1, it is seen then that
there is no region where the surface wave exists.
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Fig. 3—Integration countours in the = plane, x> 0.

RADIATION PATTERN

In order to obtain the radiation pattern, it is neces-
sary to evaluate the integrals in (26) and (27) asymp-
totically. For this purpose, let

x = pcosb; z = psin 6. (32)

With (32), (26) and (27) may be rewritten as

) 1 wee

Hu”(x, Z) — ___f o eﬁzkd sin reLkp cos (9—7)d7. fOI‘Z > d (33)
27T 261

and

wege €1 51N T -+ 7€z COS T

1
Hyr(x: Z) = N R
27 2¢1 e1sinT — feaCOST

,eikd sin Teikp cos (Gﬁ‘r)dT.

(34)

For kp>1, (33) and (34) are easily evaluated asymp-
totically with the result that

(,5) = H,i(z, ) wae e

H/x,2) = Hx,2) + H (x,2) = — ———

¥ ? Yy > ?!( b] ) 261 '\/21rkp
. [e——ikd sin 6 +

€1 81n 0§ + 7es cos O
With (6) and (32), it may easily be shown that for
kp>>1,

gthd sin G:I' (35)

€1 8in § — fes cos §

€1k
Eﬂ(/’: 0) =~ — Hl/(f’; 0)

WEpe

(36)

The outward power flow, per unit area, per unit length
of the screen at an angle 8 is obtained from (35) and
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Fig. 5—Radiation pattern w,/w=0.5, w,/w=0.25.

(36) to be

ke

1 1
S =-—Re ﬁ'E(Py 0) X H*(p7 0) = | H!J(p7 0) l2
2 2 0€

we

WEpE
= F(6) 37N
8meip
where
€1 8in 0 cos (kd sin @) — ez cos 8 sin (kd sin §) |2
Fo) = (k2sin D) — ¢ (R sinOF 36

[esin2 0 + 2]

F(8) given in (38) is defined to be the radiation pattern.

In Figs. 4 and 5, the radiation pattern F(f) is plotted
for two different sets of values of w,/w and w,/w. In
each figure, kod is used as a parameter. The patterns
are symmetrical about #=7/2, when w,/w=0. When
w./w##0, the plasma is anisotropic and the patterns are
no longer symmetrical about § =x%/2. A reversal in the
direction of the magnetic field changes the sign of e
and hence causes the radiation pattern to be rotated
through 180° about the z axis.

EFFICIENCY OF EXCITATION

The efficiency of excitation of surface waves is de-
fined to be the ratio of the power propagated as a sur-
face wave per unit width of the screen to the sum of the
powers in the surface wave and the radiation fields.
The power per unit width of the screen Pp delivered by
the magnetic current line source to the radiation field
is easily seen to be given by

T epe 1r
Pr = f Spdf = f F(6)do.
0 8rerd ¢

The power in the surface wave per unit width of the
screen is obtained from the relation

(39)

© 1
Py = f x—2~ Re E(x,3) X H*(x, 2)dz, (40)
0

where H(x, z) and E(x, z) are given, respectively, in
(21) and (23). The substitution of E(x, 2) and H(x, 2)
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from (23) and (21) in (40) gives
Ps = doe | e|ed0allVS, (41)
The efficiency of excitation obtained from (39) and
(41) is
Pg
Pg+ Pr

e—2kod(le2] [Ve1)

- o (42)
e—2kod(152[/\/?) -+ ———e—~f F(0)d0
2me; | € i 0

When kod=0, [fF(6)df can easily be evaluated and an
explicit expression obtained for #. From (38), for kd =0,
it is seen that

#(6) €2 sin? ¢ (43)
@ = [esin? @ + e?]
It is readily shown that for F(f) given in (43)
" mE
f FO)d8 = — (e — | e]). (44)
[ €

The substitution of (44) in (42) yields the following
result for kyd=0:

o)
Tl T 2leld
From (45) and (4), it is obvious that for k=0, the

efficiency of excitation 7 increases as w,/w increases.
For other values of k¢, the value of

fOFF(o)d()

has to be obtained by numerical integration and the
value of 7 is then determined from (42). For one set of
values of w,/w and w./w, the values of n are given in
Table 1 for different values of kod. It is found that the

(45)

TABLE I
VALUES OF 5 FOR wy/w=0.5 AND w,/w=0.25
Eod 0 1 2 3 ] 4 5
7 0.17 0.17 0.25 0.31 ) 0.23 0.13
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maximum value of 7 does not occur when d=0, but at
some other value of d. Hence, it follows that by a suit-
able adjustment of the distance of the line source from
the ground screen, the power delivered to the radiation
field may be minimized and a maximum value obtained
for the efficiency of excitation.

APPROXIMATE EVALUATION OF H,(x, 2)

The integral representation of Hy(x, z) given in
(20a) and (20b) shows that the contribution to Hy(x,z)
arises from a pole and a branch-cut integral. The

November

residue at the pole {=ke/+/€ gives the surface-wave
field and this has been evaluated before. It is now de-
sired to obtain the contribution from the branch-cut
integral. This contribution can be obtained as a series
in inverse powers of ¥ by expanding the integrand in a
Taylor series and integrating term by term. The result
of a straightforward calculation gives

k Fi(z, d)  3Fy(sd
Hy(x,2) = e e"(’cr—rm[ i(z,d)  3Fq(s ):I (46)
Vi e (k2)?r 8(Bx)¥2
where
€2 €1
€1 ek

and

7 (e 8 /e \? e1\?2
Fa(z,d) = —<~> - —(«) + |:8 <—> - 3] (z 4+ d)
k €9 k €9 €2
€2 €1 4%2
— —kdz — 4k — (d + 2)? — — (d + 2)*
€1 €2 3
4 €9
-3 k3dz(d* + 2%). (48)

€1

The conditions for validity of the asymptotic series in
(46) are

€
kx>>—2 -

€2

x>d+ 2 (49)
Observe that (20a) and (20b) and the condition equa-
tion (49) are symmetrical in 2z and 4. It follows that (46)
is valid for z2>d or z<d.

The asymptotic series in (46) represents the radia-
tion field. If the height d of the line source from the
ground screen is such that d=d,,=e/ek, then it fol-
lows that Fy(sz, d».) =0 and

3kwege
8\/27_1' €2

gilha—m/4)

H,(x,2) = — W;

FQ(Z, dm) (50)

where

2 €1 2 1 €1
Filz, dn) = 4[1 - —<——> :l ':~ <—> — z:I. (51)

3 €2 k €2
If the line source is at a distance dm from the ground
screen, the first term in the asymptotic expansion of
the radiation field vanishes and the radiation field near
the ground screen becomes very weak. An almost pure
surface wave may be said to be generated in this special
case. This situation is similar to that observed by Cul-

len in his treatment of the excitation of surface waves
on a reactive surface.
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